Non-linear Static Analysis (Elastoplastic, Part 2)
Non-linear Static Analysis (Elastoplastic, Part 2)
This analysis uses the data of tutorial/06_plastic_can
.
Analysis target
The target of this analysis is a 1/2 model of a container whose shape and mesh data are shown in Figs. 4.6.1 and 4.6.2, respectively. The mesh is a tetrahedral secondary element with 7236 elements and 14119 nodes.
Item | Description | Notes | Reference |
---|---|---|---|
Type of analysis | Non-linear static analysis(plastic) | !SOLUTION,TYPE=NLSTATIC | |
Number of nodes | 14,119 | ||
Number of elements | 7,236 | ||
Element type | Ten node tetrahedral quadratic element | !ELEMENT,TYPE=342 | |
Material name | M1 | !MATERIAL,NAME=M1 | |
Material property | ELASTIC, PLASTIC | !ELASTIC !PLASTIC,YIELD=DRACKER-PRAGER | |
Boundary conditions | Restraint, Distribution force | !DLOAD | |
Matrix solution | CG/SSOR | !SOLVER,METHOD=CG,PRECOND=1 |
Analysis content
A stress analysis is performed by restraining the displacement of the restraining surface as shown in Fig. 4.6.1 and applying distributed loads to the inside of the vessel as a forced surface. The Drucker-Prager model is used for the yield function. The analytical control data are shown below.
Analysis control data can.cnt
# Control File for FISTR
## Analysis Control
!VERSION
3
!SOLUTION, TYPE=NLSTATIC
!WRITE,RESULT
!WRITE,VISUAL
## Solver Control
### Boundary Conditon
!BOUNDARY, GRPID=1
BND0, 3, 3, 0.000000
!BOUNDARY, GRPID=1
BND1, 1, 1, 0.000000
BND1, 2, 2, 0.000000
BND1, 3, 3, 0.000000
!DLOAD, GRPID=1
DL0, S, 1.0
!DLOAD, GRPID=1
DL1, S, 1.0
!DLOAD, GRPID=1
DL2, S, 0.5
### STEP
!STEP, SUBSTEPS=10, CONVERG=1.0e-5
BOUNDARY, 1
LOAD, 1
### Material
!MATERIAL, NAME=M1
!ELASTIC
24000.0, 0.2
!PLASTIC, YIELD=DRUCKER-PRAGER
500.0, 20.0, 0.0
### Solver Setting
!SOLVER,METHOD=CG,PRECOND=1,ITERLOG=NO,TIMELOG=YES
20000, 1
1.0e-8, 1.0, 0.0
## Post Control
!VISUAL,metod=PSR
!surface_num=1
!surface 1
!output_type=VTK
!END
Analysis procedure
Execute the FrontISTR execution command fistr1
.
$ cd FrontISTR/tutorial/06_plastic_can
$ fistr1 -t 4
(Runs in 4 threads.)
Analysis results
For the results of the tenth substep analysis, a deformation diagram with the Mises stress contours added is created by REVOCAP_PrePost and shown in Figure 4.6.3. The deformation factor is set to 30. A part of the log file is shown below as numerical data of the analysis results.
Analysis results log 0.log
.
fstr_setup: OK
#### Result step= 0
##### Local Summary @Node :Max/IdMax/Min/IdMin####
//U1 0.0000E+00 1 0.0000E+00 1
//U2 0.0000E+00 1 0.0000E+00 1
//U3 0.0000E+00 1 0.0000E+00 1
//E11 0.0000E+00 1 0.0000E+00 1
//E22 0.0000E+00 1 0.0000E+00 1
//E33 0.0000E+00 1 0.0000E+00 1
//E12 0.0000E+00 1 0.0000E+00 1
//E23 0.0000E+00 1 0.0000E+00 1
//E31 0.0000E+00 1 0.0000E+00 1
//S11 0.0000E+00 1 0.0000E+00 1
//S22 0.0000E+00 1 0.0000E+00 1
//S33 0.0000E+00 1 0.0000E+00 1
//S12 0.0000E+00 1 0.0000E+00 1
//S23 0.0000E+00 1 0.0000E+00 1
//S31 0.0000E+00 1 0.0000E+00 1
//SMS 0.0000E+00 1 0.0000E+00 1
##### Local Summary @Element :Max/IdMax/Min/IdMin####
//E11 0.0000E+00 1 0.0000E+00 1
//E22 0.0000E+00 1 0.0000E+00 1