Eigenvalue Analysis
Eigenvalue Analysis
This analysis uses the data of tutorial/15_eigen_spring
.
Analysis target
The objects of analysis are the same springs as in the Non-linear Static Analysis (Hyperelasticity, Part 2) in the previous section.
Item | Description | Notes | Reference |
---|---|---|---|
Type of analysis | Eigen value analysis | !SOLUTION,TYPE=EIGEN | |
Number of nodes | 78,771 | ||
Number of elements | 46,454 | ||
Element type | Ten node tetrahedral quadratic element | !ELEMENT,TYPE=342 | |
Material name | MAT1 | !MATERIAL,NAME=MAT1 | |
Boundary conditions | Restraint | ||
Matrix solution | Direct method | !SOLVER,METHOD=DIRECT |
Analysis content
The displacements of the constrained surfaces shown in Figure 4.4.1 are constrained, and eigenvalue analysis is performed up to the fifth order. The analysis control data is shown below.
Analysis control data spring.cnt
.
# Control File for FISTR
## Analysis Control
!VERSION
3
!SOLUTION, TYPE=EIGEN
!EIGEN
5, 1.0E-8, 60
!WRITE,RESULT
!WRITE,VISUAL
## Solver Control
### Boundary Conditon
!BOUNDARY
XFIX, 1, 1, 0.0
YFIX, 2, 2, 0.0
ZFIX, 3, 3, 0.0
### Material
# define in mesh file
### Solver Setting
!SOLVER,METHOD=DIRECT
## Post Control
!VISUAL,metod=PSR
!surface_num=1
!surface 1
!output_type=VTK
!END
Analysis procedure
Execute the FrontISTR execution command fistr1
.
$ cd FrontISTR/tutorial/15_eigen_spring
$ fistr1 -t 4
(Runs in 4 threads.)
Analysis results
Using the resulting data file spring.res.0.3, the third order vibration mode (compression and extension of the spring in the y direction) is created by REVOCAP_PrePost and shown in Figure 4.15.1. The deformation factor is set to 1000. In addition, a list of natural frequencies output to the analysis results log file is shown below as numerical data for the analysis results.
Log file 0.log
.
fstr_setup: OK
********************************
*RESULT OF EIGEN VALUE ANALYSIS*
********************************
NUMBER OF ITERATIONS = 47
TOTAL MASS = 3.4184E-06
ANGLE FREQUENCY PARTICIPATION FACTOR EFFECTIVE MASS
NO. EIGENVALUE FREQUENCY (HZ) X Y Z X Y Z
--- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------
1 7.8307E+06 2.7983E+03 4.4537E+02 1.0289E+00 -8.8939E-02 -7.0520E-01 1.3006E-06 9.7176E-09 6.1094E-07
2 7.8716E+06 2.8056E+03 4.4653E+02 6.9687E-01 1.0755E-01 1.0106E+00 6.1290E-07 1.4598E-08 1.2890E-06
3 3.2600E+07 5.7097E+03 9.0872E+02 4.8622E-03 1.2364E+00 -7.9172E-02 4.0069E-11 2.5908E-06 1.0624E-08
4 3.8366E+07 6.1940E+03 9.8581E+02 -2.9654E-02 3.3849E-01 -6.7819E-03 9.8232E-10 1.2799E-07 5.1379E-11
5 1.2931E+08 1.1372E+04 1.8098E+03 5.1856E-01 4.7604E-02 6.7703E-01 2.8377E-07 2.3915E-09 4.8371E-07
Iter.# Eigenvalue Abs. Residual
1 7.8307E+06 9.2347E-09
2 7.8716E+06 7.8593E-08
3 3.2600E+07 1.0084E-07
4 3.8366E+07 5.3113E-08
5 1.2931E+08 6.8762E-08