Non-linear Contact Dynamic Analysis
Non-Linear Contact Dynamic Analysis
This analysis uses the data of tutorial/14_dynamic_plate_contact
.
Analysis target
The object of the analysis was the fall impact analysis of a square material on a floor surface, and the geometry is shown in Fig. 4.14.1 and the mesh data is shown in Fig. 4.14.2.
Item | Description | Notes | Reference |
---|---|---|---|
Type of analysis | Nonlinear contact dynamic analysis | !SOLUTION,TYPE=DYNAMIC !DYNAMIC,TYPE=NONLINEAR !CONTACT | |
Number of nodes | 10,712 | ||
Number of elements | 8,232 | ||
Element type | Eight node hexahedral element | !ELEMENT,TYPE=361 | |
Material name | M1, M2 | !MATERIAL,NAME=M1 !MATERIAL,NAME=M2 | |
Material property | ELASTIC, PLASTIC | !ELASTIC !PLASTIC | |
Boundary conditions | Restraint, Initial velocity | !VELOCITY,TYPE=INITIAL | |
Matrix solution | Direct method | !SOLVER,METHOD=MUMPS |
Fig. 4.14.1: Shape of the floor surface and square material
Fig. 4.14.2: Mesh data of the floor surface and square material
Analysis content
The initial speed of 4427 mm/s is set for the square material to be analyzed, and the contact motion analysis is performed. The analysis control data is shown below.
Analysis control data plateToGround.cnt
.
!!
!! Control File for FISTR
!!
!VERSION
3
!WRITE,LOG,FREQUENCY=10
!WRITE,RESULT,FREQUENCY=10
!SOLUTION, TYPE=DYNAMIC
!DYNAMIC, TYPE=NONLINEAR
1 , 1
0.0, 1.0, 200, 1.0000e-8
0.65, 0.330625
1, 1, 0.0, 0.0
20, 2621, 1
1, 1, 1, 1, 1, 1
!BOUNDARY, GRPID = 1
bottom, 1, 3, 0.0
!VELOCITY, TYPE = INITIAL
plate, 3, 3, -4427.0
!CONTACT_ALGO, TYPE=SLAGRANGE
!CONTACT, GRPID=1, INTERACTION=FSLID
CP1, 0.0, 1.0e+5
!STEP, CONVERG=1.0e-8, ITMAX=100
BOUNDARY, 1
CONTACT, 1
!MATERIAL, NAME = M1
!ELASTIC
2.00000e+5, 0.3
!PLASTIC
1.0e+8, 0.0
!MATERIAL, NAME = M2
!ELASTIC
1.16992e+5, 0.3
!PLASTIC
70.0, 0.0
!SOLVER,METHOD=MUMPS
!END
Analysis Results
A contour diagram of the Mises stresses during the fall impact is shown in Figure 4.14.3. In addition, a portion of the energy output file (dyna_energy.txt) for the monitoring nodes is shown below as numerical data for the analysis results.
Fig. 4.14.3: Mises stress of the falling impact
Displacement of monitoring nodes dyna_energy.txt
.
time step time kinetic energy strain energy total energy
0 0.0000E+000 9.7816E-003 0.0000E+000 9.7816E-003
1 1.0000E-008 9.7756E-003 4.9470E-006 9.7806E-003
2 2.0000E-008 9.7654E-003 1.4636E-005 9.7800E-003
3 3.0000E-008 9.7566E-003 2.2609E-005 9.7792E-003
4 4.0000E-008 9.7505E-003 3.7965E-005 9.7884E-003
5 5.0000E-008 9.7425E-003 6.4932E-005 9.8074E-003
6 6.0000E-008 9.7214E-003 8.4571E-005 9.8060E-003
7 7.0000E-008 9.7139E-003 9.0613E-005 9.8045E-003
8 8.0000E-008 9.7184E-003 1.0958E-004 9.8280E-003
9 9.0000E-008 9.7175E-003 1.5717E-004 9.8747E-003
10 1.0000E-007 9.6909E-003 1.7998E-004 9.8709E-003
11 1.1000E-007 9.6917E-003 1.9733E-004 9.8890E-003
12 1.2000E-007 9.7137E-003 2.2403E-004 9.9377E-003
13 1.3000E-007 9.6813E-003 2.4397E-004 9.9253E-003